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Аннотация

The ABC conjecture states that for three mutually prime numbers A, B, and C satisfying the
relation A + B = C, the product of the prime divisors A, B, and C is usually not much less than
C. The ABC conjecture is very simple to formulate, but extremely difficult to prove. Some five
hundred pages have been spent by some of the most eminent mathematicians in the Western world
trying to find a proof - but the result is far from clear and difficult to verify. Meanwhile, any
student with advanced training in the exact sciences can understand and prove the ABC conjecture,
relying on creative imagination based on the synthesis of school knowledge, including physics and
chemistry. The ABC hypothesis has a number of remarkable consequences in number theory, such
as the proof of Fermat’s Last Theorem. Prime numbers have a huge research potential, they play a
connecting role between the world around us and the microcosm. Prime numbers are therefore the
foundation of the natural sciences. In this paper, the ABC hypothesis is proved mainly on the basis
of a school curriculum with enhanced physical and mathematical training. This makes the proof
easy to verify and is important for pedagogy.
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1 Introduction

1.1 Formulations of ABC
conjecture

The ABC conjecture was formulated inde-
pendently in number theory by the math-
ematicians David Masser in 1985 [1] and
Joseph Esterle [2] in 1988. Further in the
text: Oesterlé–Masser conjecture. It is stated
in terms of three positive whole A,B C that
are co-prime and satisfy A + B = C. The
conjecture essentially states that the product
of the distinct prime factors of ABC is usually
not much smaller than C or max(A, B, C) <
KϵRad(ABC)1+ϵ, where Kϵ depend only on
some positive ϵ - real number.

The Rad function is the radical of the
numbers A,B and C equal to the product
of the primes forming these numbers, but
raised to the first power, i.e. Rad(8) =
Rad(23) = 2, Rad(1000000) = Rad(26 ∗
56) = 30. An equivalent formulation of the
Oesterlé-Masser conjecture includes the qual-
ity qABC of the triple which is defined as:

qABC =
log(C)

logRad(ABC)
=

ln(C)
lnRad(ABC)

(1.1)
For every positive real number ϵ, there

exist only finitely many triples A, B,C, of co-
prime positive integers with A + B = C such
that qABC > 1 + ϵ. Many hundreds of pages
have been spent by eminent mathematicians
in the Western world searching for proofs
[3], and the process of searching for proofs
continues.

1.2 The key idea of Prove

First of all, let’s look at an example of the
production of a batch of factory products.
Let’s assume that the law of distribution of

measurable parameters of products - indepen-
dent random variables A, B, C is the same
and their mathematical expectations are re-
spectively equal to A, B, C and are related
by the ratio A + B = C. These indepen-
dent random variables have the same mean
square deviation σ, the variance. From the
basics of mathematical statistics we know
that the variances of the random variables
are summed and that the mean square devia-
tion ∼ σ√

N
, where N - number of individual

samples used in an experiment - sample size.

From this simple example we can proceed
to the proof of the ABC conjecture. To do
this, it is necessary to apply the basic the-
ory of arithmetic, move on to simple integer
polynomials and linear maps, Jordan matri-
ces and quantum mechanics. The algebras
of all the above are in homomorphism rela-
tions. The same prime numbers taken from
the Rad(ABC) chain play the role of the roots
of an integer polynomial, the characteristic
polynomial of a linear mapping matrix, the
root vectors of a linear space decomposed
into a direct sum of invariant subspaces, and
the eigenvalues for the Hamiltonian operator
of a quantum system.

Concentrate on the eigenvalues/roots and
make sure that the average of the logarithm
of the matrices (trace, main diagonal) does
not change due to multiple roots - this is the
entropy S. Since entropy is the same additive
quantity as the number of particles and both
quantities are so-called integrals of motion,

we have: relative standard deviation ∼ 1√
S

,

where S - entropy of the system under study.
It remains to calculate S = lnRad(ABC)

L , where
L is the length of the main diagonal (non-zero
elements) of the matrix and at the same time
the number of primes in the chain Rad(ABC).
It corresponds to the statistical matrix of the
system in Hilbert space, where the size of
the matrix is infinite. When multiple roots
appear, the probability of detecting a mi-
croobject in a given state is "smeared" along
the main diagonal of the statistical matrix of
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Table 1: The general rule of homomorphism over algebras.

Difficulty of understanding –>

Prime Numbers Integers
polynomials

ODE Systems.
Matrices

Quantum
Mechanics (linear

operators)

2.3.5.7.11
. . . a = ∏p pα(p)

f = c ∏p pα(p) ẏ = A(t)y Ĥψ = Eψ and
entropy formula

S = −∑i wiln(wi)

A prime to the
power of k

is irreducible.
polynomials
(λ − ai)

k

R =
R1
⊕

R2 · · ·
⊕

Ri
Invariant

subspaces. The
polynomials of

matr.

Degenerate
energy level.

The axioms of
arithmetic

Possible algebraic
operations

Description of
dynamic processes

Models of the
microcosm

<– Root Cause

system in according to degree of the roots
(degeneration of energy level). This proves
the theorem and allows us to evaluate the
so-called quality of the triple q, but in real-
ity - a defect or fluctuation from above due
to the restriction by a function with a nor-
mal distribution according to Chebyshev’s
theorem - we are talking about the entropy
of the system under study. In short, even
without knowing the function of the distri-
bution of prime numbers π(x), it is easy to
make simple estimates. These estimates turn
out to be sufficient to prove the ABC con-
jecture, the ABC hypothesis. The world is
material, and the physics of the microcosm
and the macrocosm are the same, the cor-
respondence principle and the Heisenberg
uncertainty principle work. So prime num-
bers model a system consisting of subsystems
that do not interact but are connected by a
common resource - phase space. For example,
we can talk about a mixture of ideal gases It
is difficult to overestimate the place of prime
numbers in the physical laws that define the
surrounding material world and, in a broad
sense, our universe. See table (1).

It is the prime numbers that make it possi-

ble to connect the system, the super-system
and the sub-system.

2 The ABC conjecture from
the Eye of Physicist

2.1 The Fundamental Theorem of
Arithmetic
According to the basic theorem of arithmetic,
each of the three numbers in the expression
A + B = C can be decomposed into simple
factors, powers above one are allowed, but
under the conditions of the ABC conjecture,
repeated factors in this decomposition are
excluded due to the lack of common divisors.

A + B = C ⇐⇒

aα1
1 aα2

2 · · · aαk
k ∗ 1n−t + bβ1

1 bβ2
2 · · · bβl

l ∗ 1n−u

= cγ1
1 cγ2

2 · · · cγm
m ∗ 1n−v (2.1)

In order to obey the rules of dimensionality
of elements in the space of integers, defined
as the n-fold Cartesian product of the axis
of integers Zn = Z ∗ Z ∗ ... ∗ Z, each term
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in the space of integers has to be a term in
Zn = Z ∗ Z ∗ ... ∗ Z, each term in the above
formula is also multiplied by a multiplier
in the form of a 1n−t elementary unit cube,
so that each term has a dimension equal to
the dimension of the Euclidean space n in
which the manifolds of different dimensions
under consideration are embedded. (From
the analogy with the Lego constructor, you
can try to move on to the axioms of topology
and the postulates of Euclid). In other words,
the sums of the exponents of all multipliers
in the formula above are equal to t, u, v
respectively, which corresponds exactly to
the dimension of the manifolds A, B, C:

α1 + · · · αk = t, β1 + · · · βl = u, γ1 + ·γm = v
(2.2)

It is easy to understand the dimension of
each member and the minimum required
dimension n = max(t, u, v)(2.1) of the Eu-
clidean space in which the studied cuboids
can be embedded according to the given for-
mula. The total number of simple factors of
the above formula will be used below, it is
equal to L = k + l + m.

Developing the technical approach
adopted in the author’s work [4], we
compare the expression (2.1) with a set in
the form of three manifolds, each in the
form of a multidimensional parallelepiped
or, in short, a cuboid in a finite-dimensional
Euclidean space, with a given metric and
measure, hereinafter referred to simply
as Euclidean space. The homogeneity of
Euclidean space is postulated).
∃ a continuous invertible equivalence func-

tion f that maps each element as an elemen-
tary cube 1n in Zn of the sets A and B into
C, i.e. f (A, B) → C, which can also be ex-
pressed from a topological point of view by
the homeomorphism condition of the follow-
ing figures:

A ≡ C\B (2.3)

What physical phenomenon can the for-
mula (2.1) correspond to? It models a cer-

tain system made up of subsystems that are
not connected but share a common resource
in a certain way. From the point of view of
school knowledge, the laws of thermodynam-
ics are of particular interest when looking for
evidence for the ABC conjecture. A common
resource can be energy, phase space, entropy,
number of particles and other integrals of mo-
tion.

2.2 Microstate and macrostate of
the system
Consider a system consisting of a mixture of
ideal gases whose molecules do not interact
with each other. In particular, this gives rise
to Dalton’s Law, which states that the pres-
sure of a mixture of chemically non-reacting
gases is equal to the sum of the partial pres-
sures of each of the gases - and this is clear
because of the absence of intermolecular in-
teraction.

The author proposes to consider the ABC
conjecture from the perspective of the phase
space of a thermodynamic system with 2s di-
mensions, along the coordinate axes of which
the values of s generalised coordinates q and
s impulses p of this system (s is the num-
ber of degrees of freedom) are stored in the
Hamiltonian, known to a student of mechan-
ics under the name of the kinetic energy theo-
rem. The operator form of the Hamiltonian in
canonical form is quite beautiful, universal,
described in the literature, but requires little
experience in working with partial deriva-
tives [13]. More precisely, the application of
the statistical approach in physics requires
knowledge of the basics of quantum mechan-
ics [6-7], an understanding of the Heisenberg
uncertainty principle ∆p∆q ⩾ h̄/2, an idea
of the Schrodinger equation, the statistical ma-
trix, the Hamiltonian operator, knowledge of
the remarkable properties of Hermitian oper-
ators, the rules of operation with switches
and Poisson’s brackets, the basic formulas of
thermodynamics, but the presentation below
will be based mainly on knowledge of the
material in the school curriculum.
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Let’s try to guess which class of physical
phenomena corresponds to the ABC conjec-
ture? Let’s start with the concept of a mi-
crostate - this is a specific configuration of
the system that describes the exact positions
and impulses of all the individual particles
that make up the system. Each microstate
has a certain probability of occurrence as the
molecules move. The macrostate of a system
refers to its macroscopic properties such as
temperature, pressure, volume and density.

2.3 Phase space. Probability
distribution density
Each point in the phase space corresponds to
a specific microstate of the system. During
the evolution of the system, the phase point
representing it describes a certain phase tra-
jectory in the phase space. The product of
differentials:

dqdp = dq1dq2...dqsdp1dp2...dps (2.4)

It is considered as a "volume element" of
the phase space ∆Γ. With regard to the for-
mula under study, taking into account the
shape of the cuboid and the equality of the
increment of the linear function to its dif-
ferential, the sign ∆ will be used next along
with the designation of the differential.

Let’s express the probability and probabil-
ity density ρ to detect an object in the given
coordinates of the phase space using the ob-
vious formula:

dw = ρ(q1, q2, ...qs, p1, p2, . . . ps)dpdq (2.5)

- the probability of finding the object under
study in the specified infinitesimal intervals
of coordinates and pulses within: qi . . . qi +
dqi, pi . . . pi + dpi. In this case, the volume
of the phase space is expressed in terms of
energy according to the formula:

∆Γ =
dΓ ¯(E)

dE
∆E (2.6)

Above, ∆Γ(E) denotes the number of quan-
tum states with energies less than or equal

to E. Next, the probability density ρ is given
and the normalization condition is written:

∑
Ω

ρ(Ē)∆q∆p = 1 (2.7)

the integral over all probabilities of the sub-
system states forms a complete group of events
⇒ for the probability density function W(E):

∫
W(E)dE = 1 · · ·∑ W∆Γ = 1 (2.8)

The formulae given above help to find the
number of states of interest with energy be-
tween E . . . E + dE. It is assumed that an in-
ertial frame of reference is chosen in which
the total momentum and angular momentum
of the entire subsystem under consideration
is zero. The dash above the energy Ē denotes
the average energy value of the subsystem
for all quantum states. Here and below the
notation ∆q and ∆p are products of the form
(2.4) over all degrees of freedom.

2.4 The quantum nature of prime
numbers

Due to the nature of quantum mechanics and
the statistical physics based on it, we can
only talk about finding the probability den-
sity distribution for coordinates or momen-
tum separately, and not for both together,
since coordinates and momentum of a parti-
cle in general cannot have certain values at
the same time due to the Heisenberg uncer-
tainty principle. The desired probability dis-
tributions should take into account both the
statistical uncertainty and the uncertainty
directly inherent in the quantum mechanical
description of ⇒. The answer to the question
whether a point belongs to an arbitrary man-
ifold in the studied construction of cuboids
1n ∈ A or 1n /∈ A in phase space should be
sought from the point of view of statistical
physics / probability theory.
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2.5 Preservation of phase volume.
Entropy
According to Liouville’s theorem, the volume
of phase space has the property of invari-
ance with respect to canonical transforma-
tions preserving Hamiltonian and integrals of
motion, in particular energy, momentum, an-
gular momentum. [5, pp. 192-193].

For the quasi-classical case, where the laws
of quantum mechanics can be replaced by
Hamilton’s equations, which are a reformula-
tion of the well-known Newtonian equations.
At the same time, the volume of the phase
space

∆Γ =
∆q∆p
(2π)s (2.9)

The value of ∆Γ is called the statistical
weight of the microscopic state of the subsys-
tem, and its logarithm is called the entropy.
The entropy, in turn, is determined by the
mean value, denoted by brackets <>, of
the logarithm ∆Γ, both in the case of the de-
scription of the system under study from the
position of its quantum state, from the proba-
bility density distribution function in energy
Ei, and in the quasi-classical approach, from
the probability density, according to the for-
mulae

S = − ⟨lgw(Ei)⟨ = −∑
i

wiln(wi) (2.10)

S = − ⟨ln [(2πh̄)sρ]⟨ =

−
∫

ρ · ln [(2πh̄)sρ] dpdq (2.11)

The entropy defined in this way is, like
the statistical weight itself, a dimensionless
quantity. (In school physics and in some text-
books of theoretical physics, the Boltzmann
constant kB is placed in front of the logarith-
mic sign in the last formula = 1.38 ∗ 1023 J/K,
which allows you to measure the absolute
temperature in Kelvins rather than in energy
units, but with regard to the hypothesis, the
Boltzmann constant will be more convenient

in some cases to omit cases in which is easy
to guess from the context).

For simplicity, consider a closed system
as a whole (i.e. isolated from other systems,
e.g. placed in a thermostat), where ∆Γ1, ∆Γ2,
∆Γ3 are defined.... - statistical weights of its
different subsystems. If each of the subsys-
tems can be in one of the ∆Γα states, then the
phase volumes of the subsystems are multi-
plied and the entropies of the subsystems add
up, which is illustrated by the expressions:

∆Γ = ∏
α

∆Γα; . . . S = ∑
α

Sα (2.12)

In other words, the formula describing the
phase space allows the separation of the vari-
ables. In practice, it is often necessary to
deal with cases where not all of the micro-
scopic particle motion is quasi-classical, but
only the motion corresponding to some of
the degrees of freedom, while for the rest of
the degrees of freedom the motion is quan-
tum (for example, the translational motion
of molecules can be quasi-classical with the
quantum nature of the intramolecular mo-
tion of atoms). The formula 2.1 can be writ-
ten as

eα1x1eα2x2 . . . eαkxk + eβ1y1eβ2y2 . . . eβkyl

= eγ1z1eγ2z2 . . . eγkzl (2.13)

where the exponents of x, y, z for each
indexes are chosen so that only one prime
number is chosen from those listed in the
formula (2.1), which is easily achieved by
taking the natural logarithm. Looking ahead,
we note that in classical mechanics the vari-
able wk on which entropy depends cannot
be chosen unambiguously, since in classical
physics entropy is determined up to an arbi-
trary term.

The choice of the generalised momentum
∆pi or the generalised coordinate ∆qi for the
role of the multiplier considered in the for-
mula (2.5) is arbitrary. For the sake of sim-
plicity, we limit the volume of the studied

6 (c) Siberian Centre of Mediation (II) July 20-ty 2024
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gas mixture to q units and consider all ∆qi
= 1, i.e. we choose an element of small vol-
ume in the system that is numerically equal
to one (nanometres, angstroms or an atomic
unit of length a0 used in atomic and quan-
tum physics, the so-called Borovsky radius -
the closest to the nucleus of the orbit of the
unexcited electron of the hydrogen atom H
in the atomic model 5.29 · 10−11 m).

The ABC conjecture can be considered
as a mathematical interpretation of a com-
plex system consisting of simple subsys-
tems, where the principle of additivity of en-
tropy and multiplication of volumes of phase
spaces of subsystems is fulfilled. The formula
(2.12) is suitable for expressing the law of
conservation of entropy of a subsystem in
the separation of variables and adiabatic pro-
cesses, which are quite slow compared to
the relaxation time / establishment of local
equilibrium. In practice, under laboratory
conditions, this time passes quickly and is
comparable to the time of propagation of a
sound wave in a vessel filled with gas.

Speaking of the exponent in the formula
(2.13), we note that the well-known formulas
for the distribution of the probability density
of finding particles are expressed in terms of
an exponent: as in the Boltzmann distribution
studied in physics and mathematics schools

n0e−
mgh
kBT - the so-called barometric formula -

and Maxwell’s distribution:

dw =

(
m

2πkBT

)3/2

e−
m(v2

x+v2
y+v2

z )
2kBT dvxdvydvz

(2.14)
Both formulae give an idea of the statistical

ensemble that should be considered in more
detail.

2.6 The Canonical Gibbs
Distribution
The statistical ensemble is represented in
phase space by a set of points whose distribu-
tion is described by the probability density.
It gives an answer about the probability of

finding a state of the whole system in which
a given body in a certain quantum state wn
with energy En is in a state described in a
microscopic way. The microscopic state of
the external environment is not observed.
The Canonical Gibbs distribution is based on
a simple principle: the probability of find-
ing a complex system 1-2 is equal to the
product of the probabilities of its subsystems
1 and 2: ρ12 = ρ1 ∗ ρ2 (which implies the
convenience of using logarithms to study a
complex system). Based on this postulate of
equal probability of all microstates available
to the system under study, which follows
from The Symmetry Principle, Gibbs derived
the formula:

wn = exp
(

F − En

T

)
, . . .

ρ = (2πh)sexp
F − E(p, q)

T
(2.15)

Before the ellipsis above, the probability
distribution function for the energy of the
system in the state En is given in the quantum
mechanical representation, after that in the
quasi-classical representation.

Where

• wn(p, q) - the probability of being in a
state corresponding to a wave function
with eigenvalue

• En. - The energy as a function of the
generalised coordinates,

• s is the number of degrees of freedom.
• F is the free energy of the gas. (In ther-

modynamics, work is done by the dif-
ference between the free energies of the
final and initial states of the gas, which
explains the convenience of using this
variable).

• ρ - Probability density of being in a given
phase difference,

It is interesting to note that the free energy
of a gas is a simple consequence of the nor-
malisation condition of the above canonical
Gibbs distribution. This is a clear example
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of the connection between mathematics, the-
oretical physics and laboratory experiments.
In thermodynamics, free energy F, entropy
S, energyE, volume V, pressure P, tempera-
ture T and a number of other variables are
derived from and controlled by each other.
The first three variables listed are additive
functions.

It is possible that not all the motion of a
microscopic particle is quasi-classical, but
only the motion corresponding to some of
the degrees of freedom, while for the rest of
the degrees of freedom the motion is quan-
tum. For example, the translational motion
of molecules can be quasi-classical with the
quantum nature of the intramolecular mo-
tion of atoms. In this case, the energy levels
of the body can be written as functions of the
quasi-classical coordinates and momentum
E(p, q).

The Boltzmann and Maxwell distributions
mentioned above are special cases of the
canonical Gibbs distribution. In the first case
the potential energy is replaced by a nega-
tive sign in the numerator of the exponent
fraction, in the second case by the kinetic en-
ergy. In both cases the denominator remains
T or kT.

Due to the identity of the gas molecules,
when analysing the Maxwell distribution, it
is sufficient to consider the phase space of
only one molecule and to express the energy
in the impulse representation in coordinates

E = 1
2 m(px2 + py2 + pz2) + ϵk, where ϵk

is the energy of a gas divided by the number
of gas molecules, the k-th energy level of a
molecule due to its rotational and vibrational
degrees of freedom, the intrinsic angular mo-
mentum of elementary particles, spin, etc.
Furthermore, integration in the generalised
coordinates of the dq system can be replaced
by simple multiplication by the volume of
the vessel - a similar algorithm is used for
the Maxwell distribution (2.14). This greatly
simplifies the calculations. As a result, the
following formula is used to find the free en-
ergy F of an ideal gas (remember that the
difference free energy of the final and initial

states is just the perfect work due to the gas)
[8 forms 31.3, 31.2]:

F = −NTln

[
eV
N

(
mT

2πh̄2

)3/2

Z

]
= −NTln

eV
N

+ N f (T) (2.16)

Where

• N - number of molecules
• T is the absolute temperature in energy

units
• e is the Euler’s number 2.718 ...
• V is the volume of the vessel, where m

is the mass of the molecule
• h̄ - the reduced Planck constant equal to

1.055 ∗ 10−34 J*sec.
• Z is a statistical sum depending on the

energy levels of the molecule, its defini-
tion will be given below.

The initial temperature, volume and number
of particles are considered as external param-
eters of the system under study. An alterna-
tive representation of the above formula is to
put all the parameters into a separate func-
tion that depends only on the temperature
f (T).

The entropy of S is determined from ther-
modynamic relations as a partial derivative
with a minus sign of the free energy:

S = − ∂F
∂T

= Nln
eV
N

− N
d f
dT

(T) (2.17)

On the basis of the fundamental equations
of thermodynamics, it is possible to find
other thermodynamic variables of the subsys-
tem under study, rather than to completely
determine or set its macroscopic state.

2.7 Degeneration of energy levels
When different wave functions have the same
eigenvalue of the energy En, it means that
the energy level is degenerate. The exponent
in the formula 2.1 corresponds to the multi-
plicity of the energy level degeneracy, called
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the statistical weight gk. In this case, part of
the formula (2.15) contains a statistical sum
determined by the formula [9, p. 35 of form
1.71b].

Z = ∑
k

gke−ϵk/kT (2.18)

The normalisation condition for the for-
mula (2.16) allows us to calculate the free
energy F from the probabilities of the quan-
tum states:

1 =
N

∑
n

wn = eF/T
N

∑
n

e−En/T

→ F = −Tln
N

∑
n

e−En/T (2.19)

Let’s use the general formula (2.16) to cal-
culate the free energy of an ideal gas obeying
Boltzmann’s statistics. By writing the energy
Ep as the sum of the energies of the molecules
ϵk, it is possible to reduce the summation
over all states of the gas to the summation
over all states of a single molecule, as in the
case of the Maxwell distribution. Each state
of the gas is determined by a set of N (N is
the number of molecules in the gas) values
of ϵk, which in the Boltzmann case can all be
considered to be different from each other
(in each molecular state - no more than one
molecule, due to the limitations imposed by
the wave functions for fermions, since it is
with such objects that the barometric for-
mula works). If we write e−

En
T as a product

of the multipliers of e−
ϵk
T for ∀ of molecules

and sum independently over all states of each
molecule, we get an expression correspond-
ing to N(

∑
k

e−ϵk/T

)N

= ∑
n

e−En/T =

1
N!

(
∑
k

e−ϵk/T

)N

(2.20)

At the same time, all sets of N different
values, differing only in the distribution of

identical gas molecules over the levels of ϵk,
correspond to the same quantum state of the
gas. However, in the statistical sum, in the
formula above, each of the states should be
taken into account only once. Therefore, we
must also divide the expression obtained by
the number of possible permutations of N
molecules with each other, i.e. by N!, and
evaluate the value with Stirling formula n! =√

2πn
(n

e
)n.

As a result of this estimation, we obtain a
formula for the free energy of a Boltzmann
ideal gas:

F = −NTln

[
e
N ∑

k
e−ϵk/T

]
(2.21)

In the case of degenerate energy levels, the
number of repetitions of the corresponding
value is ϵk, it is equal to the multiplicity of
the degeneracy. What happens to the formu-
lae (2.17) and (2.18) for a mixture of gases?
To answer this question we turn to the Large
canonical Gibbs distribution with a variable
number of particles:

wn,N = Aėxp
Ω + µN − En,N

T
(2.22)

Here above is the distribution function of
the subsystem of an ideal gas over two vari-
ables:

• for the energy value En and the number
of particles N

• Ω - thermodynamic potential
• T - absolute temperature in energy units
• µ is the chemical potential of the

molecule.

Now let’s define the distribution function
of the subsystem of a mixture of ideal gases
of a gas by variables - the energy value En
and the number of particles N1, N2, N3 - de-
generate energy levels are also possible.

wn,N1,N2... = Aexp
Ω + ∑i µiNi − En,N1,N2...

T
(2.23)

The energy of Ep can also be represented as
the sum of the energies of the ϵk molecules,
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reducing the summation over all gas states
to the summation over all states of a single
molecule.

For a mixture of ideal gases, the above
formulae remain valid, only the number of
molecules of the corresponding gas is re-
placed by N [9]. For a mixture of gases, the
following thermodynamic variables have ad-
ditive properties: number of molecules, en-
ergy, entropy, partial pressure of each gas,
thermodynamic potential, and a number of
others. In this case, according to the rules
of thermodynamics, the volume and temper-
ature are the same for all the molecules of
each gas in the mixture. Note that, due to the
absence of interaction between molecules,
the entropy values are summed up and, ac-
cordingly, the volumes of the phase spaces
are multiplied (2.12).

It is easy to trace the analogy of the for-
mula (2.23) with the logarithm of the for-
mula (2.1) and check their similarity. Al-
though the formulas have slight differences,
this should not be discouraging. This confi-
dence is supported by a formula modelling
phase space and entropy (2.10). Pairs of
products in (2.23) µiNi under the sign of the
sum enter symmetrically. In this formula it
is possible to sum all states of energy levels,
not molecules. The state of the energy levels
is determined by the quantum-atomic param-
eters of the molecule, which you learned in
high school chemistry.

2.8 The role of radicals of the
numbers A, B, C
The ABC conjecture works with the concept
of the quality of a triple of numbers based on
the decimal logarithm. (Let us assume a tran-
sition to the natural logarithm by simultane-
ously dividing the numerator and the denom-
inator by ln10). For example, the radical of
the product of the numbers Rad(ABC) corre-
sponds to a mixture of ideal gases with non-
degenerate energy levels, which is achieved
at a sufficiently low temperature when only
the translational and rotational degrees of

freedom for polyatomic molecules are acti-
vated. Considering the above, this means
the first power of the prime numbers of the
formula (2.1).

Due to the Clapeyron equation PV = kNT it
is possible to control the temperature, the gas
pressure by adjusting the initial temperature,
the number of molecules in the mixture (con-
centration) and the volume of the subsystem.
Thermodynamic relations are used to easily
calculate the energy of the gas molecules
and the entropy, and hence the volume of
the phase space ∆Γi = exp(S(Ei)). Next we
can calculate ∆Γ1, ∆Γ2, ∆Γ3 . . . - The statisti-
cal weights of the gases 1, 2, 3 in the mixture
are each equal to the prime numbers of the
formula (2.1) of the first degree - the radical
Rad(ABC). Let’s denote such a value of the
volume of the phase space under ∆Γ0 and
the corresponding entropy S0 = lnRad(ABC)

L ,
in the denominator of this fraction it is nec-
essary, according to the definition of entropy
(2.10), and the length of this diagonal or the
total number of elements L = k+l+m is
calculated from the formula 2.1 and is equal
to the total number of prime factors in the
ABC conjecture. If each of the subsystems
can be in one of the Γα quantum states, then
the phase volumes of the subsystems are mul-
tiplied and the entropies of the subsystems
add up.

In the case of adiabatic compression, the
basic thermodynamic equation takes the
form that the internal energy of the gas de-
creases (increases) only by the amount of
work done by the gas (over the gas). Ac-
cording to the formula of the first law of
thermodynamics dQ = dE + PdV, where dQ
is the amount of heat, P is the gas pressure,
dV is a small increase in volume, the multi-
plier of PdV is equal to the work done. In
an adiabatic process dQ = 0 there is no heat
exchange, there are no dissipative processes,
and therefore all changes in the subsystem
remain reversible and dE = −PdV.

It is known from school thermodynamics
that, in an adiabatic process, the relationship
between pressure and volume / temperature
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and volume has the form

PVγ = const . . . TVγ−1 = const (2.24)

where γ > 1 is the quotient of the heat
capacity at constant pressure divided by the

heat capacity at constant gas volume
CP

CV
. In

adiabatic compression the entropy of the sys-
tem remains constant, but degenerate energy
levels ϵk are "switched on" due to an increase
in temperature.

This is accompanied by the appearance
of degrees above one in the formula (2.1).
Let’s denote such a statistical state of the sys-
tem by the letter D̃, which symbolises the
appearance of degenerate energy levels or
entropy, SD̃. (Details are given below). Next,
we divide the phase volume corresponding
to some generalised coordinates or impulses
(e.g. those associated with quantum effects)
into separate subsets of the studied phase
space: A, B and C, according to the indices
given in the formula (2.1). As mentioned
above, entropy is an additive function). Due
to the adiabatic compression, which pre-
serves the entropy, and the conditions of the
experiment, we obtain

qABCmax =

ln(C)
lnRad(A) + lnRad(C − A) + lnRad(C)

=
SC · m

S0L
=

SC · m
(SA + SB + SC)L

< 1 (2.25)

In this formula, an upper bound is placed
on qABC by formulating the ABC conjecture.
After the second equal sign there is a transi-
tion to thermodynamic (statistical) variables.
The denominator of the numerator contains
the value of the entropy of the phase space,
taking into account the multipliers m and
L = (k + l + m), expressed by the definition
of the entropy of the subsystem C as part of
the studied system D under the conditions
of an adiabatic process.

The problem of finding the extremum of
a function in the form of the next first order

fraction is reduced to finding the maximum
and minimum values of the denominator,
where the variable part is the number A,
while C = Const. => the minimum qABC
is obtained at A = C/2, which is easy to
understand from the symmetric occurrence
of the variable part of the expression under
the sign of the logarithm in the denominator,
analysing a function of the form y = x(c −
x).

Remember that (A is to some extent a prod-
uct of prime numbers). The task is to get the
correct evaluation. The maximum term in
the denominator of the ABC conjecture and
the formula will be qABCmax < 1. The en-
tropy does not change during the adiabatic
process.

Meanwhile, numerical experiments have
found a number of maximum values of qABC
above one. A volunteer network called
ABC@home is dedicated to a distributed com-
puting project that was supposed to compile
a complete list of all ABC triples consisting
of integers consisting of a maximum of 18
digits. In 2011, the project achieved this goal
by compiling a list of 14,482,065 triples. See
There are 241 ABC triples of "quality" q not
lower than 1.4, which are often called "good"
ABC triples [11,14].

How can this paradox be explained? - The
author is convinced that this phenomenon is
caused by fluctuations, as explained below in
a section specifically dedicated to this phe-
nomenon.

3 Linear Spaces and
Polynomials Functions

To find a proof of the ABC conjecture by
mathematical methods, it is necessary to use
the rules of linear algebra, representations
of quantum mechanics about the wave func-
tion, the operator form of the Hamiltonian [7,
1.18], estimates of entropy using a statistical
matrix [8, pp. 28-29] in a quantum mechan-
ical representation. The rapid development
of quantum computing and cryptography is
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helping to popularise knowledge of quantum
mechanics. In order to broaden the horizons
of a student of the XXI century, it would be
logical to add the basics of quantum mechan-
ics to the secondary school curriculum, using
an analogy with radio waves, signal spectra.
For many years, the electronic configuration
of an atom, the arrangement of electrons in
an atom according to levels and sublevels,
has been studied in school chemistry classes
on the basis of general concepts of quantum
mechanics. Based on the conditions of the
ABC conjecture, an additive function should
be chosen. The most suitable candidate is en-
tropy, defined as the logarithm of the phase
space (2.10). For adiabatic processes the vol-
ume of the phase space is preserved. This sim-
ple statement is the key to the proof and re-
quires almost no mathematical calculations.

The formula (2.1) implies a statistical de-
scription of a physical system consisting of
subsystems expressing the additive property
of a common resource for energy, entropy
and other thermodynamic quantities. These
properties are provided by the decomposi-
tion of integers A, B, C into prime numbers
for which Greatest Common Divisor (GCD) =
1. It is known from the introductory course
in number theory that the rules apply to the
ring of integer polynomials in a given field
of complex numbers k[x]. Such polynomi-
als have a number of properties similar to
those of integers. There is a homomorphism
between the algebra of integers and the al-
gebra of polynomials for addition and mul-
tiplication operations. In the following, the
terms simple and irreducible are used syn-
onymously when referring to polynomials.

Let f → k[x], then there is a one-to-one
decomposition:

f = c ∏
p

pα(p), (3.1)

where c is a constant and the product is
taken by irreducible polynomials of the form
(λ − ai)

k [10 Chapter 1 Theorem 2]. The
degrees and the constant are uniquely deter-
mined.

(λ − a1)
α1(λ − a2)

α2 · · · (λ − ak)
αk q1(λ)

+ (λ − b1)
β1(λ − b2)

β2 · · · (λ − bl)
βl q2(λ)

+ (λ− c1)
γ1(λ− c2)

γ2 · · · (λ− cm)
γm q3(λ) = 1

(3.2)

Integer polynomials are written in the for-
mula above, based on irreducible ones, they
are also mutually simple [12, p. 333], which
is briefly expressed in the formula above:
there are polynomials q1, q2, q3, the total sum
of the formula (3.1) assuming GCD = 1.

Each of the above polynomials can be
uniquely mapped onto a linear map A (re-
spectively B and C) with a characteristic
polynomial [12,13] whose roots as eigenval-
ues are taken from formula (3.1) - these will
be just the primes contained in Rad(ABC).
If a linear transformation of dimension n has
n independent eigenvectors, then using these
vectors as a basis, we will reduce the square
matrix of the linear transformation to a diago-
nal form, while the eigenvectors correspond-
ing to different eigenvalues will be linearly
independent, and we can choose a basis in
which such vectors will be orthogonal. In
the case of multiple roots we have:

(λI −A)k x = 0 (3.3)

By elementary transformations, the linear
mapping matrix can be reduced to a Jordan
form of size k ⋆ k corresponding to the multi-
plicity k (height) of the root [12,13]. Putting
it all together, it is possible to obtain a linear
mapping whose characteristic polynomial is
the product of the characteristic polynomials
of the linear mappings from formula (3.1).
The matrix corresponding to this combined
linear mapping will have the block-diagonal
form

( A 0 0
0 B 0
0 0 C

)
. The eigenvalues of a matrix

are the result of combining the eigenvalues
of the matrices A,B, C. The result is a unique
decomposition of the space R into a direct sum
of invariant subspaces:
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R = R1
⊕

R2
⊕

R3
⊕

R4
⊕

R5 · · ·
⊕

Ri

(3.4)
The set of all root vectors corresponding

to the eigenvalue of λ forms an invariant
subspace of Ri. This linear space is described
by the matrix D̃.

We set the determinant of this matrix and
its characteristic polynomial to zero in order
to search for eigenvalues and vectors:

DetD̃ =
i=L

∏
i=1

(λ − λi)
ki = 0 (3.5)

where L is the number of primes in the
formula (2.1) λi is the proper/root value of
the linear mapping D̃ and hence of the matri-
ces D̃. It is known from the algebraic theory
of matrices that elementary transformations
can be performed on λ matrices to produce
similar matrices, but at the same time the
trace of the matrix remains constant, i.e. the
sum of its elements on the main diagonal and
the determinant det - both quantities do not
depend on the basis and are invariant.

Denote by λ1, λ2, λ3, λ4, . . . λi the eigenval-
ues of the matrix, they are just taken from
a polynomial (3.2) with roots from a set of
prime numbers (2.1), but using the logarithm
function and averaging over the main diag-
onal of the matrix (for more information,
see the formula (3.7)), all these eigenval-
ues are different, non-zero under the con-
ditions of the ABC conjecture. It is known
that the determinant of the matrix is equal to
the product of the eigenvalues. In our case,
from the point of view of thermodynamics,
detD̃ corresponds to the phase space of the
studied system with unexcited energy levels
Γ0 = Rad(ABC) = detD̃.

Since we are considering square matrices,
and due to the matrix commutability property
of ourselves, in a number of cases, including
the one under study, it is possible to raise
the λ matrix D̃ to a power, perform algebraic
operations on it, calculate polynomials from
the matrix.

This illustrates the general rule of homo-
morphism (A homomorphism in the category
of algebraic systems is a mapping of an alge-
braic system A to B that preserves the basic
operations and basic relations).

A =< A, ϕ > B =< B, ψ >, f : A → B).
In general, scalar functions can be com-

puted from a square matrix by decomposition
into a Taylor series, but with some peculiari-
ties [13, 182-183]. In the theory of analytic
functions (i.e. having a derivative in the
complex plane, which leads to an amazing
conclusion about the infinite differentiabil-
ity of an analytic function [13]). It is known
that a series of a complex variable has the
property of converging on a certain conver-
gence ring r < |z| < R on the complex plane
C [13, p. 64], with the exception of poles.

3.1 Logarithm of the Matrix

Let’s calculate the logarithm of the matrix
D̃ with root vectors corresponding to (3.2).
Here, different eigenvectors/root vectors are
chosen as the basis, which are prime num-
bers, and therefore the matrix will have a
block-diagonal form (the order of the Jordan
cells is not essential). The F function works
with each Jordan cell separately[15 p. 182].
From this decomposition it is easy to con-
clude that a cellular/blockwise comparison
of functions from matrices is possible, which
will be used below.

It is quite easy to calculate the logarithm
[13,15] from a Jordan cell by applying the
decomposition in one row Newton-Mercator
(Taylor series for the function of the natural
logarithm of the matrix) and then represent
the matrix to the right of the equal sign as
the sum of the unit matrix I and the matrix
G with zero values on the diagonals: G =
λ(I +D). Applying the well-known Taylor
series expansion of the logarithm of a scalar
variable and taking into account the above,
which also applies to the matrix G, we have

ln(I + G) =
G
1
− G2

2!
+

G3

3!
− G4

4!
. . . (3.6)
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This series ends at some degree, since the
Jordan cell is nilpotent and, when raised to
the power of k (the dimension of the Jordan
cell), becomes a zero matrix.

As a result, it is easy to calculate the en-
tropy of S = ln∆Γ by averaging over all
microcanonical states. It is important to
take into account the normalisation condi-
tion - the sum of all probabilities of the
states of the system under study forms
a complete group of events => ∑i=L

i=1 λi = 1.
Here the probability is expressed from the
eigenvalue λi, which is uniquely associated
with the energy of the microstate, summation
is performed over all possible microstates,
and non-zero values are on the main diago-
nal of the matrix D̃. The length of this diag-
onal is L = k + l + m - the number of simple
factors in the ABC conjecture, see formula
(2.1).

Initial entropy value S0 =
lnRad(ABC)

L
The logarithm of the product is decomposed
into the sum of logarithms and is equal to the
mean value from the trace of the entropy ma-
trix => divided by the number of non-zero
values on the main diagonal of the matrix D,
i.e. the length of the chain L in the formula
(2.1). Let us switch on the degeneration of
the energy levels at time t1, which in the lan-
guage of matrix algebra means the appear-
ance of multiple eigenvalues - root vectors
(3.3). This can be realised by "including"
powers greater than one in the characteristic
polynomial:

1
L

i=L

∏
i=1

e−
Ei
T · (λ − λi)

1+σ(t−t1)(ki−1)

1 + σ(t − t1)(ki − 1)
(3.7)

and then the matrix corresponding to this
characteristic polynomial is brought into Jor-
dan form and the logarithm is taken from the
resulting matrix. Let’s explain the meaning
of the variables:

• λi - all prime numbers are multipliers of
the L-series of numbers Rad(ABC), they
are also eigenvalues of the linear map-
ping /matrix

• ki is the exponent of the formula (3.2),
at the same time the multiplicity of the
root and the size of the i-th Jordan cell
of the linear map.

• σ - function sigmoid σ(t) = 1
1+e−ν(t−t1)

can be approximated by the formula
where the parameter ν is set from the
outside and regulates the smoothness of
the change, the higher the value of ν ,
the steeper the "step" at time t1. This
function is defined here on the real axis
R.

• Ei is the energy calculated by the mi-
crostate i. This factor, divided exponen-
tially by the temperature T, determines
the density of the probability distribu-
tion depending on the Hamiltonian of
the system under study.

Above, according to the formula (3.4), it
was concluded that it is possible to decom-
pose the linear space into a direct sum of sub-
spaces, i.e. to reduce the matrix to Jordan
form. For each cell there is a unique root λi.
Since the multiplier e−

Ei
T remains the same

within each Jordan cell, it can be considered
as a constant and reduced in the following
arguments ("cell-by-cell" / "block-by-block"
comparison of matrix functions).

From the point of view of school physics,
it can be seen that when studying an ideal
Carnot machine, the calculation of its effi-
ciency is based on the value δQ

T , which is
the entropy differential. Consequently, the
formula (3.7), taking into account the defi-
nition of entropy (2.10), operates with prob-
abilistic quantities, which in turn is a purely
mathematical concept that excludes such an
unusual quantity for the algebra of matrices
as temperature (the latter can be determined
for the system under study from the canoni-
cal definition of Gibbs by taking a quotient,
the derivative of entropy with respect to en-
ergy).

The function (3.7) is differentiable and
can be analytically extended to the complex
plane. This means that it can be positioned
along the main diagonal of the Jordan form
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and the matrix logarithm calculated from the
result. This function corresponds to the vol-
ume of the phase space. Reducing the matrix
just mentioned to the Jordan form, taking
the logarithm of each element on the main
diagonal of the matrix and averaging over
all the values will give the entropy value of
the system under consideration.

In fact, a careful look at (3.7) reveals the
formula (2.10) for finding the entropy. The
average over all microstates is obtained by
dividing by the total number of microstates.
Each microstate is considered equally likely.
When averaging the logarithm of the matrix,
the sign of the product in the formula (3.7)
is replaced by the sum. The somewhat cum-
bersome denominator of the fraction after
the product sign in this formula allows you
to first average the value of the logarithm of
the element on the main diagonal separately
for each Jordan cell, taking into account the
multiplicity (degree) of each multiplier. Ac-
cording to the results of such cellular aver-
aging, the exponent of each prime number
from the matrix is reduced. Next, averaging
is performed over the entire diagonal of the
matrix, where the unique value of each prime
number occurs only once, and there are L
such numbers in total. There is a "smearing"
of the probability density from the averaging
operation over all possible Jordan cells and
taking into account the multiplicity of the
root vector λk, i.e. its height or exponent
of a prime number in the ABC conjecture
formula.

S = − ⟨lnw(λi)⟩ = −∑
i

wiln(wi)

=
1
L

i=L

∑
i=1

1
k

ln(λk
i )e

− E(λk)
T (3.8)

With adiabatic compression/expansion,
the volume of the phase space of the sys-
tem and the averaged matrix logarithm of it
- the entropy - remain constant. The mul-
tiplier e−

ϵk
T does not qualitatively change

the main conclusion: the conservation of en-
tropy as a result of an adiabatic change in

the macrostate of the system. In this case
the trace of the matrix D̃ is equal to the sum
of the traces of the combined matrices. It is
possible to compare the initial value of the
entropy S0 with the value at time t1 + 0 and
then select some degrees of freedom of the
system under study separately. The situa-
tion was considered above when not all the
motion of the system is quasi-classical, but
only the motion corresponding to a part of
the degrees of freedom, while for the rest of
the degrees of freedom the motion is quan-
tum. Since entropy is preserved during the
adiabatic process, it is possible to return the
subsystem to its original state.

The cumbersome formula (3.7) and the
formula (3.8) based on knowledge of statis-
tical physics can be replaced by the adia-
batic equation from the school course (2.24),
which is limited to a general description of
degenerate energy levels and, accordingly,
the appearance of Jordan cells greater than
one, which greatly simplifies understanding
the essence of the proof.

3.2 Trace of matrices. Entropy

Thus, a simple matrix relation can be formu-
lated in the form of the following equations

Tr(D) = Tr(A) + Tr(B) + Tr(C) (3.9)

which is obvious from the analysis of the
main diagonal of the matrix D̃ of the block
diagonal form

( A 0 0
0 B 0
0 0 C

)
.

And the following formula means averag-
ing statistical variables taking into account
the weights of the terms (diagonal lengths
L = k + l + m of each block of the matrix D̃.

1
L

Tr(D̃) =
k
L

Tr(A)

k
+

l
L

Tr(B)
l

+
m
L

Tr(C)

m
(3.10)

The latter implies the equality SD = SA +
SB + SC or in terms of matrix traces:
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Tr(ŵ(lnŵ))D̃ = Tr(ŵ(lnŵ))A+

Tr(ŵ(lnŵ))B + Tr(ŵ(lnŵ))C (3.11)

This simply expresses the properties of addi-
tivity of entropy, especially when variables
are separated. According to the ABC con-
jecture A + B = C. From these relations,
taking into account the additivity property
of entropy and obeying the normal law of
fluctuation of this value, it is easy to calcu-
late qABC.

3.3 Statistical matrix for arbitrary
A, B and C
It is possible to map a quantum mechanical
system onto linear maps A,B, C. Let’s move
from Euclidean space to Hilbert space.

Here, orthogonal vectors are an orthonor-
mal system of functions, so that any opera-
tor Q̂ is expressed in terms of

〈
n|Q̂|m

〉
=∫

ψ∗
nQ̂ψmdq is explicitly time-independent

and commutes with the Hamiltonian, then
its matrix elements〈

n|Q̂|m
〉

do not change with time. This
is the quantum form of motion integrals. It
is important to note that in our case all the
eigenvalues of λ, i.e. the energies of the mi-
crostates, are real, which means that the H
Hermite operator. The remarkable property
of the Hermite operator ensures the commu-
tativity of the Hamiltonian with a number of
operators, such as energy and entropy. Note
that the time derivative of the statistical ma-
trix commutes with the Hamiltonian:[

Ĥ, ̂̇w] = 0 (3.12)

For the physical phenomena under consid-
eration, this condition is fulfilled. And the
result is a quantum mechanical analogue of
Liouville’s theorem: the commutativity of
an operator on any quantity with a Hamil-
tonian is precisely the quantum mechanical
expression of the persistence of that quantity
in time.

The eigenvalue of λi corresponds to the
energy of the subsystem Ei. And as you can
easily guess, the sum of the eigenvalues on
the main diagonal is the energy of the whole
system E (energy is also an additive variable)

The eigenvalue of λi corresponds to the
energy of the subsystem Ei. And as you can
easily guess, the sum of the eigenvalues on
the main diagonal is the energy of the whole
system E (energy is also an additive variable)

Ĥψ = Eψ (3.13)

The eigenvalues of the Hamiltonian of a
system consisting of two subsystems are usu-
ally written as follows

Ĥ |n, m⟩ = (E1 + E2)n.m > (3.14)

This formula can be extended to the case
of a number of subsystems and the analogy
with invariant subspaces can be verified, see
(3.4).

To find a statistical matrix for arbitrary
numbers A, B, C, first assume that the sys-
tem is in a pure quantum state with a wave
function

〈
n|ψ̂|m

〈
. The probability distribu-

tion for the coordinates is given by the square
of the module:

|ψ|2 = ∑ c∗m · cnψ∗
mψn (3.15)

Where the product of the coefficients of the
expansion of the wave function ψ according
to the system of orthonormal (basis) cm and
cn can be replaced by the probability wnm.
As a result, we get the following formula for
the probability distribution by coordinates
(keeping the diagonal elements of the statis-
tical matrix)

∑ ∑ wmnψ∗
m · ψn = ∑ ψ∗

nŵψn

=> dwq = ∑ ψ∗
mŵψmdq (3.16)

In an expression written in this form, any
complete system of normalised wave func-
tions can be used as functions of ψn. The
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task of determining the statistical distribu-
tion is reduced to calculating the probabili-
ties wn = wnn, which represent the desired
distribution function in quantum statistics.
The formula for the mean of an arbitrary
value f is simplified:

⟨ f ⟩ = ∑ wn fnn (3.17)

Therefore, to find the entropy, it is suffi-
cient to calculate the average of the trace
from the statistical matrix (2.10).

3.4 Analogies from ODE systems
It is interesting to draw some analogies be-
tween the quantum mechanical approach de-
scribed above and systems of ordinary differ-
ential equations.

Consider the fundamental matrix of a sys-
tem of linear differential equations Y and the
Vronsky determinant W= det|Y(t)|. Accord-
ing to the Liouville-Ostrogradsky theorem [13,
section VIII(18)]:

W(t) = W(t0)exp
∫ t

t0

TrD(τ)dτ

· · ·
n

∏
1

λi = exp
∫ T

0
TrD(τ)dτ (3.18)

At time t1 the multiplicity of the roots
increases, which physically corresponds to
the degenerate energy levels of the system,
but the trace of the matrix under the inte-
gral remains constant. A similar formula has
been found for the determinant of the Pol-
ish philosopher and mathematician Vronsky,
which is useful for finding the derivative of
a vector function in a system of linear differ-
ential equations.

The above mathematical formulae reveal
the physical meaning of phase space and the
trace of the matrix in the theory of ordinary
differential equations. The adiabatic process
and the constancy of entropy play an impor-
tant role. There are other analogies to phase
space W → Γ and entropy Tr(D(τ)) → S.

Note that the matrices are infinite and re-
duced to the Jordan form, the sigmoid func-
tion in question turns on/off the multiplicity
of the roots and provides a transformation
of the matrix just mentioned.

3.5 Fluctuations
For the ∀ formula (2.1) there is a whole class
of physical subsystems: ideal gases, solutions,
vibrations of the crystal lattice with quasi-
particles - phonons, and so on, where the
above approaches are implemented.

What is the quality indicator of the triple
q or of the deviations from the stated princi-
ples? To answer this question, let’s look at
the whole system, including the subsystem
under consideration and the fluctuations.

Taking into account the above arguments
and the formula, it is necessary to find a
suitable interpretation for the quality in-
dicator of the triple q, the upper limit of
which asymptotically approaches the frac-
tion asymptotically approaches by some func-
tion with normal distribution as the entropy
increases. (In thermodynamics, the num-
ber of molecules is of the order of the num-
ber/Avogadro constant - the number of parti-
cles contained in one mole of any substance
6.0221̇023). Most of the well-known examples
of finding triples of numbers using super-
computers and distributed computing net-
works are so-called "good triples" [11,14]
with q > 1 greater than one (qmax ∼ 1.4), but
these more athletic than scientific records
are on the order of one ten-thousandth of
the Avogadro constant.

Assuming an upper limit of qmax for the
reference value of the three numbers A, B, C,
for large N, it is more convenient to replace
the word "quality" by a more appropriate
"defect" according to the formula of the fluc-
tuation from the mean, namely ∆q = ∆S

S0
.

For an isolated subsystem, the very state-
ment about fluctuations in energy, entropy,
temperature, number of particles and other
thermodynamic parameters is not appropri-
ate - one can only talk about fluctuations
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by considering the system as a whole. Let
us define the equilibrium entropy of a body
S(E, V) as a function of its (average) energy
and volume. By fluctuation of entropy we
mean the change of the function S(E, V), for-
mally considered as a function of the exact
(fluctuating) values of energy and volume. It
is known that the probability of fluctuation
in the system is proportional to the exponen-
tial deviation of the entropy:

w = e∆S (3.19)

This is the entropy of the whole system.
Let’s start by finding the mean square of

the fluctuation in the number of particles of
an ordinary ideal gas in a relatively small
volume isolated in the gas. Assuming a uni-
form distribution of the gas molecules over
the whole volume V0 and the conditions for
the smallness of the subsystem under consid-
eration in comparison with the whole system
V
V0

≪ 1, the square of the fluctuation of the
number of particles in the subsystem (points
in the manifold of the phase space 1n) is de-
termined by the formulae [9 Formula 113.1]:

〈
(∆N)2

〉
= N; . . .

(
〈
(∆N)2〉)1/2

N
=

1√
N

(3.20)
The relative fluctuation of the number of

particles is equal to the inverse square root
of the average number of particles. Similar
formulas are known from textbooks of mathe-
matical statistics [10]. Based on the average
square of the fraction in a given volume of
gas, a Gaussian probability distribution of
the fluctuation of the number of particles is
found:

w(N)dN =
1√

2πN̄
exp

(
− (N − N̄)2

2N̄

)
dN

(3.21)
For small N it is more appropriate to use

the Poisson formula, known from mathemat-
ical statistics [10].

wn =
N̄Ne−N̄

N!
(3.22)

In the case we are interested in (assigned vol-
ume) V ≪ V0 (initial volume), the number of
particles in the assigned volume is assumed
to be small compared to the total number of
particles in the gas, although it may differ sig-
nificantly from its average value. Taking into
account the Stirling formula n! =

√
2πn

(n
e
)n,

the formula (3.22) changes to the formula
(3.21) with small N.

Regarding the question of entropy fluc-
tuations, we note the following. Accord-
ing to Chebyshev’s theorem [10, Chapter
9.3] and the additivity property of entropy,
the Gaussian probability distribution (3.20
-3.22) can be applied to the fluctuation of
entropy ∆S =

√
S0 and the upper bound of

∆qmax. In fact, the number of particles in a
gas and the entropy are additive quantities
and integrals of motion, so they must be de-
scribed by similar formulas. It is enough to
imagine an experiment in which the initial
container is divided into N small equivalent
containers, where N is a rather large number,
but obviously much smaller than the Avo-
gadro number and the number of molecules
in the system. Then, instead of the average
number of particles, the entropy value can
be substituted in the above formulae for esti-
mating the fluctuation.

The question of the density of the distri-
bution of prime numbers remains open in
science. At the same time, you can enter a
function that limits ∆q from above.

∆qABCmax =
(
〈
(∆S)2〉)1/2

S
=

1√
S0

≈
√

L
(ln(Rad(ABC)))

(3.23)

Since the fluctuations of entropy obey the
law of normal distribution and (3.23), the
same is true for ∆qABCmax .

To estimate the upper bound of the maxi-
mum deviation ∆qABCmax , we can take into ac-
count the discrete nature of the phase space
and the principle of equal probability of mi-
crostates, as well as the normalisation con-
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dition (2.8). The maximum deviation of
∆qABCmax corresponds to the lowest proba-
bility value. In turn, the probability of such
a microstate is determined only by the values
on the main diagonal of the static matrix. In
total there are L such elements, the small-
est integer being one, so we have wmin = 1

L ,
which corresponds to the law of normal dis-
tribution:

1
L
=

1√
2πσ

exp

(
−∆qmax

2

2σ2

)
(3.24)

Where the standard deviation of σ is de-
termined by

σ =

√
L

(ln(Rad(ABC)))
(3.25)

Note that L ≤ π(Rad(ABC)) Riemann
functions π. This statement simply says that
the length of the chain of different primes in
the formula (2.1) does not exceed the total
number of primes not exceeding Rad(ABC),
determined by the Riemann function of the
radical of the product A, B, C. Let us explain
that the Riemann function π(x) is defined
as the number of prime numbers that do not
exceed the integer number x. Chebyshev
proved in 1851-1852 that if there is a limit,
it must be equal to one:

limx→∞
π(x)

ln(x)/x
= 1 (3.26)

.
Which leads to the conclusion:

L
ln(Rad(ABC)) ≤

1
Rad(ABC) .

This ratio is more accurate the higher the
value of Rad(ABC). Solving the equation
(3.24) and assuming that the expression un-
der the radical sign is positive, we find

∆qABCmax = σ

√
2ln

L√
2πσ

(3.27)

The result of the algebraic transformations
turns out to be cumbersome in the end, but
if we take into account the ratio between the

length of the chain of prime numbers and the
value of the radical Rad(ABC)), small terms
can be neglected (see below an alternative
way of estimating ∆qABCmax).

This is known from mathematical statistics
courses:

|∆qABCmax < ϵ| ≤ 2Φ
( ϵ

σ

)
. . . Φ(x) =

1√
2π

∫ x

0
e−

z2
2 dz (3.28)

For any given ϵ, there are only a finite num-
ber of triples of numbers for which the upper
value of the defect index: ∆qABCmax < x + ϵ

(do not confuse the arbitrary parameter ϵ

with the energy of a single molecule, denoted
by the same letter above!) Here x is the math-
ematical expectation ∆qABC, depending on
the distribution function of prime numbers,
which is not known to modern science. But
it can definitely be argued that there is a
upper-limiting function ∆qABCmax , the proba-
bility density distribution of which is subject
to the law of normal distribution. It is easy
to show that this conclusion is equivalent
to another representation of the defect qmax,
max(A, B, C) < K(ε)rad(A, B, C)1+ε, where
K(ϵ) is a certain constant that depends only
on ϵ.

An alternative way of estimating ∆qABCmax

follows from The Six Sigma Rule, which ap-
plies to the normal distribution in mathemat-
ical statistics (0.5 errors per 1 million). The
minimum probability in the formula (3.24)
is inversely proportional to the length of the
chain L. A chain of two million of the product
of prime numbers is so large that it exceeds
the number of atoms in the universe (in the
relation 3.26, you can replace the variables
y = lnx and make sure that the deviation
qABCmax ≈ 3σ is characterised by the appear-
ance in L of a chain (2.1) of prime numbers
≈ 10434294).

As a result, the discreteness factor of phase
space due to the Heisenberg Uncertainty Prin-
ciple will kick in earlier than the Six Sigma
rule.
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Figure 1: This histogram illustrates the discrete
nature of the phase space for the three ABC numbers
under consideration. In the case of qABC > qABC +

∆qABCmax there is not a single triple that satisfies the
ABC conjecture.

The result obtained can be compared with
the ABC@home project, a histogram of the
quality of triples of q from the number of
decimal places in ABC numbers. Figure 2.2
The ABC@home project finds all triples of
ABC numbers for a given upper bound on the
"quality" of qABC and the number of decimal
places.

Figure 2: The ABC@home project finds all triples
of ABC numbers for a given upper bound on the
"quality" of qABC and the number of decimals.

The ABC@home project says "The list of
so-called good triples, consisting of 20 digits, is
already complete. For example, the graph shows
that there are 11 good triples in which c contains
20 digits. If new good triples are found, only the
red part of the graph above will increase. (al-
ready 20 digits)". In fact, the project applies a
logarithmic scale to the normal distribution

qABCmax = 1 + ∆qABCmax and then a quanti-
tative method for dividing a set of ranked
data into equal subsections (here- deciles),
but a characteristic type of normal distri-
bution (see above the Maxwell distribution
(2.14) and 1). Instead of using supercomput-
ers and distributed computing resources, the
author simply created a 10,000 unit sample
of the normal distribution with three lines of
code and got a similar result in a few seconds
in the cross-platform application GnuOctave
(an analogue of MathLab under the GnuGPL
licence) on a not-so-new desktop computer.
Since the number of particles in a gas and
entropy are additive quantities, the formula
(2.23 -2.24) is also suitable for estimating
entropy fluctuations. To do this, it is suffi-
cient to imagine an experiment in which the
initial container is divided into N equivalent
containers (in the case of a mixture of gases,
this operation should be carried out without
separating the molecules of different gases,
which would lead to a change in entropy),
where N is a sufficiently large number, and
at the same time much smaller than the Avo-
gadro number / number of molecules in the
system. Instead of the average number of par-
ticles, the entropy value must be substituted.
.

4 Prime numbers as the
metalanguage of the

Universe

The conclusion of the canonical Gibbs distri-
bution was made on the basis of an equally
probable distribution over all microcanoni-
cal states of the system, the probability of
finding a complex system 1-2 equal to the
product of the probabilities of its subsystems
1 and 2: ρ12 = ρ1 · ρ2, which makes it con-
venient to work with logarithms and allows
one to operate with additive variables. Ad-
ditive functions for homogeneous quantities
are the basis for a set of natural numbers,
for countable sets and for the production of
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arbitrary measurements => measurability
of distances, introduction of the concepts of
metrics and measures. The properties of the
microcosm determine the properties of the
macrocosm => The operation of multipli-
cation is primary to the operation of addi-
tion/subtraction. From the above positions
it is possible to explain the axioms of arith-
metic introduced by Giuseppe Peano, as well
as the principle of mathematical induction,
widely practised in mathematical proofs.

4.1 Summing up
The conclusions drawn can be generalised to
a number of subsystems and apply equally
to mathematics (foundations of probability
theory, logic) and physics. Prime numbers as
the metalanguage of the Universe (see Table
1 above).

It is logical to determine the logarithm of
the probability distribution and obtain an
additive value - entropy. The possibility of
assigning a subsystem as part of a complex
system and the possibility of defining a func-
tion allowed the architect of the universe
(if there is one, despite the scepticism of
atheists) to make the world manageable and
knowable, to reduce complex phenomena to
simple ones.

The association of prime numbers with
logarithmic functions seems perfectly natu-
ral. In the course of evolution, the hearing,
sight and touch of humans and animals have
adapted to the logarithmic law, which al-
lows them to perceive the environment ade-
quately, organically continuing the laws of
nature, is a consequence of the law of sta-
tistical mechanics and quantum physics, the
probability theory.

To illustrate the manifestations of the
properties of the microcosm, it is enough
to refer to Heisenberg’s uncertainty princi-
ple ∆p∆q ⩾ h̄/2, which manifests itself in
Fourier transforms, in spectra and in signals:
it is impossible to limit the spectrum and the
duration of the signal at the same time.

The properties of polynomial rings and lin-

ear operators are derived from the proper-
ties of prime numbers. Due to the additive
properties of entropy, it is possible to reduce
the variation of easily measurable quantities:
number of particles, energy, temperature,
pressure, as the sample increases, and to de-
scribe them in simple linear relations. In this
way, the relationship between the microcosm
and the macrocosm is realised. This relation-
ship obeys the laws of mathematical statistics
(statistical physics). It is noteworthy that lit-
erally from the very first classes, children
study phenomena based on quantum nature,
the fundamental laws of our universe: sym-
metry, uniformity of space, isotropy, etc. To
better understand the author’s surprise, imag-
ine a world without prime numbers, where
each number has as many divisors as possi-
ble, where it is impossible to isolate a part
from the whole, where each phenomenon is
irreducible to simpler ones. . .

To summarise the above, it can be ar-
gued that the absence of prime numbers
would change our universe beyond recogni-
tion. Would it be possible for a sane person
to live in a world without prime numbers?
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